Nuprl Lemma : empty-context-eq-lemma
∀[Gamma:j⊢]. ∀[A,x,y:Top]. (x = y ∈ {Gamma ⊢ _:A}) supposing ∀I:fset(ℕ). (¬Gamma(I))
Proof
Definitions occuring in Statement :
cubical-term: {X ⊢ _:A}
,
I_cube: A(I)
,
cubical_set: CubicalSet
,
fset: fset(T)
,
nat: ℕ
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
top: Top
,
all: ∀x:A. B[x]
,
not: ¬A
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
uimplies: b supposing a
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
not: ¬A
,
implies: P
⇒ Q
,
false: False
,
cubical-term: {X ⊢ _:A}
Lemmas referenced :
istype-top,
fset_wf,
nat_wf,
I_cube_wf,
istype-void,
cubical_set_wf,
names-hom_wf,
istype-cubical-type-at,
cube-set-restriction_wf,
cubical-type-ap-morph_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
because_Cache,
cut,
introduction,
extract_by_obid,
hypothesis,
sqequalRule,
functionIsType,
universeIsType,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
instantiate,
functionExtensionality,
dependent_functionElimination,
functionExtensionality_alt,
independent_functionElimination,
voidElimination,
lambdaFormation_alt,
dependent_set_memberEquality_alt,
equalityIstype,
applyEquality
Latex:
\mforall{}[Gamma:j\mvdash{}]. \mforall{}[A,x,y:Top]. (x = y) supposing \mforall{}I:fset(\mBbbN{}). (\mneg{}Gamma(I))
Date html generated:
2020_05_20-PM-04_12_06
Last ObjectModification:
2020_04_10-PM-04_40_54
Theory : cubical!type!theory
Home
Index