Nuprl Lemma : fun-comp-exists

Gamma:j⊢. ∀A,B:{Gamma ⊢ _}.  (Gamma ⊢ CompOp(A)  Gamma ⊢ CompOp(B)  Gamma ⊢ CompOp((A ⟶ B)))


Proof




Definitions occuring in Statement :  composition-op: Gamma ⊢ CompOp(A) cubical-fun: (A ⟶ B) cubical-type: {X ⊢ _} cubical_set: CubicalSet all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B
Lemmas referenced :  fun-comp_wf composition-op_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt rename introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis universeIsType instantiate applyEquality sqequalRule because_Cache inhabitedIsType

Latex:
\mforall{}Gamma:j\mvdash{}.  \mforall{}A,B:\{Gamma  \mvdash{}  \_\}.    (Gamma  \mvdash{}  CompOp(A)  {}\mRightarrow{}  Gamma  \mvdash{}  CompOp(B)  {}\mRightarrow{}  Gamma  \mvdash{}  CompOp((A  {}\mrightarrow{}  B)))



Date html generated: 2020_05_20-PM-04_04_33
Last ObjectModification: 2020_04_10-AM-01_43_02

Theory : cubical!type!theory


Home Index