Nuprl Lemma : fun-comp_wf

[Gamma:j⊢]. ∀[A,B:{Gamma ⊢ _}]. ∀[cA:Gamma ⊢ CompOp(A)]. ∀[cB:Gamma ⊢ CompOp(B)].
  (fun-comp(Gamma; A; B; cA; cB) ∈ Gamma ⊢ CompOp((A ⟶ B)))


Proof




Definitions occuring in Statement :  fun-comp: fun-comp(Gamma; A; B; cA; cB) composition-op: Gamma ⊢ CompOp(A) cubical-fun: (A ⟶ B) cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B fun-comp: fun-comp(Gamma; A; B; cA; cB) squash: T prop: true: True
Lemmas referenced :  pi-comp_wf csm-ap-type_wf cube-context-adjoin_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j cc-fst_wf csm-composition_wf composition-op_wf squash_wf true_wf cubical-fun-as-cubical-pi cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality instantiate applyEquality because_Cache hypothesis sqequalRule lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry universeIsType natural_numberEquality imageMemberEquality baseClosed hyp_replacement

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A,B:\{Gamma  \mvdash{}  \_\}].  \mforall{}[cA:Gamma  \mvdash{}  CompOp(A)].  \mforall{}[cB:Gamma  \mvdash{}  CompOp(B)].
    (fun-comp(Gamma;  A;  B;  cA;  cB)  \mmember{}  Gamma  \mvdash{}  CompOp((A  {}\mrightarrow{}  B)))



Date html generated: 2020_05_20-PM-04_04_20
Last ObjectModification: 2020_04_16-PM-05_31_59

Theory : cubical!type!theory


Home Index