Nuprl Lemma : fun-comp_wf
∀[Gamma:j⊢]. ∀[A,B:{Gamma ⊢ _}]. ∀[cA:Gamma ⊢ CompOp(A)]. ∀[cB:Gamma ⊢ CompOp(B)].
  (fun-comp(Gamma; A; B; cA; cB) ∈ Gamma ⊢ CompOp((A ⟶ B)))
Proof
Definitions occuring in Statement : 
fun-comp: fun-comp(Gamma; A; B; cA; cB)
, 
composition-op: Gamma ⊢ CompOp(A)
, 
cubical-fun: (A ⟶ B)
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
fun-comp: fun-comp(Gamma; A; B; cA; cB)
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
Lemmas referenced : 
pi-comp_wf, 
csm-ap-type_wf, 
cube-context-adjoin_wf, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
cc-fst_wf, 
csm-composition_wf, 
composition-op_wf, 
squash_wf, 
true_wf, 
cubical-fun-as-cubical-pi, 
cubical-type_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
instantiate, 
applyEquality, 
because_Cache, 
hypothesis, 
sqequalRule, 
lambdaEquality_alt, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
hyp_replacement
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A,B:\{Gamma  \mvdash{}  \_\}].  \mforall{}[cA:Gamma  \mvdash{}  CompOp(A)].  \mforall{}[cB:Gamma  \mvdash{}  CompOp(B)].
    (fun-comp(Gamma;  A;  B;  cA;  cB)  \mmember{}  Gamma  \mvdash{}  CompOp((A  {}\mrightarrow{}  B)))
Date html generated:
2020_05_20-PM-04_04_20
Last ObjectModification:
2020_04_16-PM-05_31_59
Theory : cubical!type!theory
Home
Index