Nuprl Lemma : is-cubical-equiv-at

[X:j⊢]. ∀[T:{X ⊢ _}]. ∀[A,w,I,rho:Top].
  (IsEquiv(T;A;w)(rho) {eqv:J:fset(ℕ)
                          ⟶ f:J ⟶ I
                          ⟶ u:A(f(rho))
                          ⟶ (u1:u1:T((p)(f(rho);u)) × (Path_((A)p)p (q)p app(((w)p)p; q))(((f(rho);u);u1))
                             × cubical-pi-family(X.A.Fiber((w)p;q);(Fiber((w)p;q))p;(Path_((Fiber((w)p;q))p)p (q)p
                                                                                          q);J;((f(rho);u);u1)))| 
                          ∀J,K:fset(ℕ). ∀f:J ⟶ I. ∀g:K ⟶ J. ∀u:A(f(rho)).
                            ((eqv (f(rho);u) g)
                            (eqv f ⋅ (u f(rho) g))
                            ∈ (u1:u1:T((p)g((f(rho);u))) × (Path_((A)p)p (q)p app(((w)p)p; q))((g((f(rho);u));u1))
                              × cubical-pi-family(X.A.Fiber((w)p;q);(Fiber((w)p;q))p;(Path_((Fiber((w)p;q))p)p (q)p
                                                                                           q);K;(g((f(rho);u));u1))))} )


Proof




Definitions occuring in Statement :  is-cubical-equiv: IsEquiv(T;A;w) cubical-fiber: Fiber(w;a) contractible-type: Contractible(A) path-type: (Path_A b) cubical-app: app(w; u) cubical-pi-family: cubical-pi-family(X;A;B;I;a) cc-snd: q cc-fst: p cc-adjoin-cube: (v;u) cube-context-adjoin: X.A csm-ap-term: (t)s csm-ap-type: (AF)s cubical-type-ap-morph: (u f) cubical-type-at: A(a) cubical-type: {X ⊢ _} csm-ap: (s)x cube-set-restriction: f(s) cubical_set: CubicalSet nh-comp: g ⋅ f names-hom: I ⟶ J fset: fset(T) nat: uall: [x:A]. B[x] top: Top all: x:A. B[x] set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] product: x:A × B[x] sqequal: t equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T is-cubical-equiv: IsEquiv(T;A;w) all: x:A. B[x] cubical-pi: ΠB cubical-pi-family: cubical-pi-family(X;A;B;I;a)
Lemmas referenced :  cc_fst_adjoin_cube_lemma cubical_type_at_pair_lemma istype-top cubical-type_wf cubical_set_wf contractible-type-at cubical-fiber-at csm-ap-type-at
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution dependent_functionElimination thin Error :memTop,  hypothesis axiomSqEquality inhabitedIsType hypothesisEquality isect_memberEquality_alt isectElimination isectIsTypeImplies universeIsType instantiate because_Cache

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[T:\{X  \mvdash{}  \_\}].  \mforall{}[A,w,I,rho:Top].
    (IsEquiv(T;A;w)(rho)  \msim{}  \{eqv:J:fset(\mBbbN{})
                                                    {}\mrightarrow{}  f:J  {}\mrightarrow{}  I
                                                    {}\mrightarrow{}  u:A(f(rho))
                                                    {}\mrightarrow{}  (u1:u1:T((p)(f(rho);u))
                                                          \mtimes{}  (Path\_((A)p)p  (q)p  app(((w)p)p;  q))(((f(rho);u);u1))
                                                          \mtimes{}  cubical-pi-family(X.A.Fiber((w)p;q);(Fiber((w)p;q))
                                                                                                                                        p;(Path\_((Fiber((w)p;q))p)p  (q)p
                                                                                                                                                        q);J;((f(rho);u);u1)))| 
                                                    \mforall{}J,K:fset(\mBbbN{}).  \mforall{}f:J  {}\mrightarrow{}  I.  \mforall{}g:K  {}\mrightarrow{}  J.  \mforall{}u:A(f(rho)).
                                                        ((eqv  J  f  u  (f(rho);u)  g)  =  (eqv  K  f  \mcdot{}  g  (u  f(rho)  g)))\}  )



Date html generated: 2020_05_20-PM-03_25_43
Last ObjectModification: 2020_04_06-PM-06_44_14

Theory : cubical!type!theory


Home Index