Nuprl Lemma : istype-cubical-term-closed-type

[X:j⊢]. ∀[T:{ * ⊢ _}].  istype({X ⊢ _:closed-type-to-type(T)})


Proof




Definitions occuring in Statement :  cubical-term: {X ⊢ _:A} closed-type-to-type: closed-type-to-type(T) closed-cubical-type: * ⊢ _} cubical_set: CubicalSet istype: istype(T) uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] closed-cubical-type: * ⊢ _} closed-type-to-type: closed-type-to-type(T) cubical-term: {X ⊢ _:A} all: x:A. B[x] member: t ∈ T
Lemmas referenced :  cubical_type_at_pair_lemma cubical_type_ap_morph_pair_lemma fset_wf nat_wf I_cube_wf names-hom_wf cube-set-restriction_wf closed-cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt sqequalHypSubstitution setElimination thin rename productElimination sqequalRule cut introduction extract_by_obid dependent_functionElimination Error :memTop,  hypothesis setIsType functionIsType universeIsType isectElimination instantiate hypothesisEquality applyEquality because_Cache equalityIstype

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[T:\{  *  \mvdash{}  \_\}].    istype(\{X  \mvdash{}  \_:closed-type-to-type(T)\})



Date html generated: 2020_05_20-PM-01_51_38
Last ObjectModification: 2020_03_20-PM-01_26_13

Theory : cubical!type!theory


Home Index