Nuprl Lemma : istype-cubical-term-closed-type
∀[X:j⊢]. ∀[T:{ * ⊢ _}].  istype({X ⊢ _:closed-type-to-type(T)})
Proof
Definitions occuring in Statement : 
cubical-term: {X ⊢ _:A}
, 
closed-type-to-type: closed-type-to-type(T)
, 
closed-cubical-type: { * ⊢ _}
, 
cubical_set: CubicalSet
, 
istype: istype(T)
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
closed-cubical-type: { * ⊢ _}
, 
closed-type-to-type: closed-type-to-type(T)
, 
cubical-term: {X ⊢ _:A}
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
Lemmas referenced : 
cubical_type_at_pair_lemma, 
cubical_type_ap_morph_pair_lemma, 
fset_wf, 
nat_wf, 
I_cube_wf, 
names-hom_wf, 
cube-set-restriction_wf, 
closed-cubical-type_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
productElimination, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
Error :memTop, 
hypothesis, 
setIsType, 
functionIsType, 
universeIsType, 
isectElimination, 
instantiate, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
equalityIstype
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[T:\{  *  \mvdash{}  \_\}].    istype(\{X  \mvdash{}  \_:closed-type-to-type(T)\})
Date html generated:
2020_05_20-PM-01_51_38
Last ObjectModification:
2020_03_20-PM-01_26_13
Theory : cubical!type!theory
Home
Index