Nuprl Lemma : nc-0-s-commute

[I:fset(ℕ)]. ∀[i,j:ℕ].  ((i0) ⋅ s ⋅ (i0) ∈ I+j ⟶ I+i)


Proof




Definitions occuring in Statement :  nc-0: (i0) nc-s: s add-name: I+i nh-comp: g ⋅ f names-hom: I ⟶ J fset: fset(T) nat: uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  fset_wf nat_wf nc-0-as-nc-p nc-p-s-commute
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality because_Cache sqequalRule

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i,j:\mBbbN{}].    ((i0)  \mcdot{}  s  =  s  \mcdot{}  (i0))



Date html generated: 2016_05_18-PM-00_05_18
Last ObjectModification: 2016_02_08-PM-03_10_38

Theory : cubical!type!theory


Home Index