Nuprl Lemma : refl-map_wf

[X:j⊢]. ∀[A:{X ⊢ _}].  (refl-map(X;A) ∈ {X ⊢ _:(A ⟶ discr({X.A ⊢ _:Path((A)p)}))})


Proof




Definitions occuring in Statement :  refl-map: refl-map(X;A) pathtype: Path(A) discrete-cubical-type: discr(T) cubical-fun: (A ⟶ B) cc-fst: p cube-context-adjoin: X.A cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a refl-map: refl-map(X;A)
Lemmas referenced :  cubical-refl_wf cube-context-adjoin_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 csm-ap-type_wf cc-fst_wf cc-snd_wf path-type-subtype csm-discrete-cubical-type discrete-cubical-term_wf pathtype_wf cubical-term-eqcd cubical-lam_wf discrete-cubical-type_wf cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality hypothesis sqequalRule because_Cache Error :memTop,  equalityTransitivity equalitySymmetry independent_isectElimination universeIsType

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].    (refl-map(X;A)  \mmember{}  \{X  \mvdash{}  \_:(A  {}\mrightarrow{}  discr(\{X.A  \mvdash{}  \_:Path((A)p)\}))\})



Date html generated: 2020_05_20-PM-03_44_18
Last ObjectModification: 2020_04_20-PM-07_30_45

Theory : cubical!type!theory


Home Index