Nuprl Lemma : refl-map_wf
∀[X:j⊢]. ∀[A:{X ⊢ _}].  (refl-map(X;A) ∈ {X ⊢ _:(A ⟶ discr({X.A ⊢ _:Path((A)p)}))})
Proof
Definitions occuring in Statement : 
refl-map: refl-map(X;A)
, 
pathtype: Path(A)
, 
discrete-cubical-type: discr(T)
, 
cubical-fun: (A ⟶ B)
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
refl-map: refl-map(X;A)
Lemmas referenced : 
cubical-refl_wf, 
cube-context-adjoin_wf, 
cubical_set_cumulativity-i-j, 
cubical-type-cumulativity2, 
csm-ap-type_wf, 
cc-fst_wf, 
cc-snd_wf, 
path-type-subtype, 
csm-discrete-cubical-type, 
discrete-cubical-term_wf, 
pathtype_wf, 
cubical-term-eqcd, 
cubical-lam_wf, 
discrete-cubical-type_wf, 
cubical-type_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
because_Cache, 
Error :memTop, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
universeIsType
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].    (refl-map(X;A)  \mmember{}  \{X  \mvdash{}  \_:(A  {}\mrightarrow{}  discr(\{X.A  \mvdash{}  \_:Path((A)p)\}))\})
Date html generated:
2020_05_20-PM-03_44_18
Last ObjectModification:
2020_04_20-PM-07_30_45
Theory : cubical!type!theory
Home
Index