Nuprl Lemma : uniform-extend_wf

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}].  (Gamma ⊢ Extension(A) ∈ 𝕌{[i j'']})


Proof




Definitions occuring in Statement :  uniform-extend: uniform-extend{i:l}(Gamma; A) cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uniform-extend: uniform-extend{i:l}(Gamma; A) subtype_rel: A ⊆B prop:
Lemmas referenced :  extension-fun_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j uniform-extension-fun_wf cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule setEquality thin instantiate extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry universeIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].    (Gamma  \mvdash{}  Extension(A)  \mmember{}  \mBbbU{}\{[i  |  j'']\})



Date html generated: 2020_05_20-PM-05_22_22
Last ObjectModification: 2020_04_18-PM-08_05_03

Theory : cubical!type!theory


Home Index