Nuprl Lemma : uniform-extension-fun_wf
∀[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[ext:extension-fun{j:l}(Gamma; A)].
  (uniform-extension-fun{j:l}(Gamma; A; ext) ∈ ℙ{[i | j'']})
Proof
Definitions occuring in Statement : 
uniform-extension-fun: uniform-extension-fun{i:l}(Gamma;A;ext)
, 
extension-fun: extension-fun{i:l}(Gamma;A)
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uniform-extension-fun: uniform-extension-fun{i:l}(Gamma;A;ext)
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
extension-fun: extension-fun{i:l}(Gamma;A)
Lemmas referenced : 
cubical_set_wf, 
cube_set_map_wf, 
cubical-term_wf, 
face-type_wf, 
thin-context-subset, 
csm-ap-type_wf, 
context-subset_wf, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
csm-context-subset-subtype2, 
equal_wf, 
constrained-cubical-term_wf, 
csm-ap-term_wf, 
csm-face-type, 
context-subset-map, 
csm-constrained-cubical-term, 
extension-fun_wf, 
cubical-type_wf, 
csm-ap-comp-type-sq, 
csm-comp_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
sqequalRule, 
functionEquality, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
hypothesis, 
because_Cache, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
lambdaEquality_alt, 
cumulativity, 
universeIsType, 
universeEquality, 
Error :memTop, 
equalityTransitivity, 
equalitySymmetry, 
hyp_replacement
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[ext:extension-fun\{j:l\}(Gamma;  A)].
    (uniform-extension-fun\{j:l\}(Gamma;  A;  ext)  \mmember{}  \mBbbP{}\{[i  |  j'']\})
Date html generated:
2020_05_20-PM-05_22_08
Last ObjectModification:
2020_04_17-AM-09_22_24
Theory : cubical!type!theory
Home
Index