Nuprl Lemma : univ-comp_wf

[G:j⊢]. (univ-comp{i:l}() ∈ G ⊢ CompOp(c𝕌))


Proof




Definitions occuring in Statement :  univ-comp: univ-comp{i:l}() cubical-universe: c𝕌 composition-op: Gamma ⊢ CompOp(A) cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x]
Lemmas referenced :  univ-comp-sq comp-fun-to-comp-op_wf cubical-universe_wf compU_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin Error :memTop,  hypothesis instantiate dependent_functionElimination hypothesisEquality universeIsType

Latex:
\mforall{}[G:j\mvdash{}].  (univ-comp\{i:l\}()  \mmember{}  G  \mvdash{}  CompOp(c\mBbbU{}))



Date html generated: 2020_05_20-PM-07_23_48
Last ObjectModification: 2020_04_28-PM-00_12_38

Theory : cubical!type!theory


Home Index