Nuprl Lemma : univ-comp_wf
∀[G:j⊢]. (univ-comp{i:l}() ∈ G ⊢ CompOp(c𝕌))
Proof
Definitions occuring in Statement : 
univ-comp: univ-comp{i:l}()
, 
cubical-universe: c𝕌
, 
composition-op: Gamma ⊢ CompOp(A)
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
Lemmas referenced : 
univ-comp-sq, 
comp-fun-to-comp-op_wf, 
cubical-universe_wf, 
compU_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
Error :memTop, 
hypothesis, 
instantiate, 
dependent_functionElimination, 
hypothesisEquality, 
universeIsType
Latex:
\mforall{}[G:j\mvdash{}].  (univ-comp\{i:l\}()  \mmember{}  G  \mvdash{}  CompOp(c\mBbbU{}))
Date html generated:
2020_05_20-PM-07_23_48
Last ObjectModification:
2020_04_28-PM-00_12_38
Theory : cubical!type!theory
Home
Index