Nuprl Lemma : universe-comp-fun_wf

[X:j⊢]. ∀[t:{X ⊢ _:c𝕌}].  (CompFun(t) ∈ +⊢ Compositon(decode(t)))


Proof




Definitions occuring in Statement :  universe-comp-fun: CompFun(A) universe-decode: decode(t) cubical-universe: c𝕌 composition-structure: Gamma ⊢ Compositon(A) cubical-term: {X ⊢ _:A} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T universe-comp-fun: CompFun(A) subtype_rel: A ⊆B all: x:A. B[x]
Lemmas referenced :  comp-op-to-comp-fun_wf2 cubical_set_cumulativity-i-j universe-decode_wf universe-comp-op_wf istype-cubical-universe-term cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut sqequalRule thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality hypothesis dependent_functionElimination universeIsType

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[t:\{X  \mvdash{}  \_:c\mBbbU{}\}].    (CompFun(t)  \mmember{}  X  +\mvdash{}  Compositon(decode(t)))



Date html generated: 2020_05_20-PM-07_17_50
Last ObjectModification: 2020_04_27-PM-01_34_09

Theory : cubical!type!theory


Home Index