Nuprl Lemma : universe-comp-fun_wf
∀[X:j⊢]. ∀[t:{X ⊢ _:c𝕌}].  (CompFun(t) ∈ X +⊢ Compositon(decode(t)))
Proof
Definitions occuring in Statement : 
universe-comp-fun: CompFun(A)
, 
universe-decode: decode(t)
, 
cubical-universe: c𝕌
, 
composition-structure: Gamma ⊢ Compositon(A)
, 
cubical-term: {X ⊢ _:A}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe-comp-fun: CompFun(A)
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
Lemmas referenced : 
comp-op-to-comp-fun_wf2, 
cubical_set_cumulativity-i-j, 
universe-decode_wf, 
universe-comp-op_wf, 
istype-cubical-universe-term, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
sqequalRule, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
dependent_functionElimination, 
universeIsType
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[t:\{X  \mvdash{}  \_:c\mBbbU{}\}].    (CompFun(t)  \mmember{}  X  +\mvdash{}  Compositon(decode(t)))
Date html generated:
2020_05_20-PM-07_17_50
Last ObjectModification:
2020_04_27-PM-01_34_09
Theory : cubical!type!theory
Home
Index