Nuprl Lemma : eu-congruent-flip-seg
∀e:EuclideanPlane. ∀[a,b:Point].  ab ≡ ba
Proof
Definitions occuring in Statement : 
eu-seg-congruent: s1 ≡ s2
, 
eu-mk-seg: ab
, 
euclidean-plane: EuclideanPlane
, 
eu-point: Point
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
eu-seg-congruent: s1 ≡ s2
, 
member: t ∈ T
, 
top: Top
, 
euclidean-plane: EuclideanPlane
Lemmas referenced : 
eu_seg1_mk_seg_lemma, 
eu_seg2_mk_seg_lemma, 
eu-congruent-flip, 
eu-point_wf, 
euclidean-plane_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
sqequalRule, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
hypothesisEquality, 
isectElimination, 
setElimination, 
rename
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[a,b:Point].    ab  \mequiv{}  ba
Date html generated:
2016_05_18-AM-06_37_12
Last ObjectModification:
2015_12_28-AM-09_25_14
Theory : euclidean!geometry
Home
Index