Nuprl Lemma : eu-congruent-flip-seg

e:EuclideanPlane. ∀[a,b:Point].  ab ≡ ba


Proof




Definitions occuring in Statement :  eu-seg-congruent: s1 ≡ s2 eu-mk-seg: ab euclidean-plane: EuclideanPlane eu-point: Point uall: [x:A]. B[x] all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] eu-seg-congruent: s1 ≡ s2 member: t ∈ T top: Top euclidean-plane: EuclideanPlane
Lemmas referenced :  eu_seg1_mk_seg_lemma eu_seg2_mk_seg_lemma eu-congruent-flip eu-point_wf euclidean-plane_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation sqequalRule cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis hypothesisEquality isectElimination setElimination rename

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[a,b:Point].    ab  \mequiv{}  ba



Date html generated: 2016_05_18-AM-06_37_12
Last ObjectModification: 2015_12_28-AM-09_25_14

Theory : euclidean!geometry


Home Index