Nuprl Lemma : eu-inner-five-segment'
∀e:EuclideanPlane
  ∀[a,b,c,A,B,C:Point].  (∀d,D:Point.  (bd=BD) supposing (cd=CD and ad=AD)) supposing (bc=BC and ac=AC and A_B_C and a_b\000C_c)
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
eu-between-eq: a_b_c
, 
eu-congruent: ab=cd
, 
eu-point: Point
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
euclidean-plane: EuclideanPlane
, 
prop: ℙ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
Lemmas referenced : 
eu-inner-five-segment, 
eu-congruent_wf, 
eu-point_wf, 
eu-between-eq_wf, 
euclidean-plane_wf
Rules used in proof : 
rename, 
setElimination, 
independent_isectElimination, 
isectElimination, 
isect_memberFormation, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
hypothesis, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
lemma_by_obid, 
cut
Latex:
\mforall{}e:EuclideanPlane
    \mforall{}[a,b,c,A,B,C:Point].
        (\mforall{}d,D:Point.    (bd=BD)  supposing  (cd=CD  and  ad=AD))  supposing  (bc=BC  and  ac=AC  and  A\_B\_C  and  a\_b\_\000Cc)
Date html generated:
2016_05_18-AM-06_38_48
Last ObjectModification:
2016_01_02-PM-00_14_01
Theory : euclidean!geometry
Home
Index