Nuprl Lemma : eu-midpoint_wf

[e:EuclideanPlane]. ∀[m,a,b:Point].  (a=m=b ∈ ℙ)


Proof




Definitions occuring in Statement :  eu-midpoint: a=m=b euclidean-plane: EuclideanPlane eu-point: Point uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T eu-midpoint: a=m=b euclidean-plane: EuclideanPlane
Lemmas referenced :  and_wf eu-between-eq_wf eu-congruent_wf eu-point_wf euclidean-plane_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[m,a,b:Point].    (a=m=b  \mmember{}  \mBbbP{})



Date html generated: 2016_05_18-AM-06_42_19
Last ObjectModification: 2015_12_28-AM-09_22_48

Theory : euclidean!geometry


Home Index