Nuprl Lemma : eu-seg-length-test

e:EuclideanPlane. ∀[a,b,c,d,x,y:Point].  (ba=xy) supposing (dc=yx and ab=cd)


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane eu-congruent: ab=cd eu-point: Point uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q prop: euclidean-plane: EuclideanPlane
Lemmas referenced :  euclidean-plane_wf eu-point_wf eu-congruent_wf eu-length-flip eu-congruent-iff-length
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination productElimination independent_isectElimination because_Cache hypothesis equalityTransitivity equalitySymmetry setElimination rename

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[a,b,c,d,x,y:Point].    (ba=xy)  supposing  (dc=yx  and  ab=cd)



Date html generated: 2016_05_18-AM-06_41_17
Last ObjectModification: 2016_01_04-PM-02_45_44

Theory : euclidean!geometry


Home Index