Nuprl Lemma : sq_stable_eu-seg-congruent

e:EuclideanStructure. ∀[s1,s2:Segment].  SqStable(s1 ≡ s2)


Proof




Definitions occuring in Statement :  eu-seg-congruent: s1 ≡ s2 eu-segment: Segment euclidean-structure: EuclideanStructure sq_stable: SqStable(P) uall: [x:A]. B[x] all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] eu-seg-congruent: s1 ≡ s2 member: t ∈ T
Lemmas referenced :  sq_stable__eu-congruent eu-seg1_wf eu-seg2_wf eu-segment_wf euclidean-structure_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination hypothesis

Latex:
\mforall{}e:EuclideanStructure.  \mforall{}[s1,s2:Segment].    SqStable(s1  \mequiv{}  s2)



Date html generated: 2016_05_18-AM-06_36_42
Last ObjectModification: 2015_12_28-AM-09_25_35

Theory : euclidean!geometry


Home Index