Nuprl Lemma : Dbet-to-le

g:EuclideanPlane. ∀a,b,c:Point.  (Dbet(g;a;b;c)  |ab| |bc| ≤ |ac|)


Proof




Definitions occuring in Statement :  dist-bet: Dbet(g;a;b;c) geo-le: p ≤ q geo-add-length: q geo-length: |s| geo-mk-seg: ab euclidean-plane: EuclideanPlane geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T not: ¬A dist-bet: Dbet(g;a;b;c) uall: [x:A]. B[x] prop: subtype_rel: A ⊆B guard: {T} uimplies: supposing a
Lemmas referenced :  not-dist-to-le dist-bet_wf geo-point_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin because_Cache independent_functionElimination hypothesis universeIsType isectElimination hypothesisEquality inhabitedIsType applyEquality instantiate independent_isectElimination sqequalRule

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c:Point.    (Dbet(g;a;b;c)  {}\mRightarrow{}  |ab|  +  |bc|  \mleq{}  |ac|)



Date html generated: 2019_10_16-PM-02_53_24
Last ObjectModification: 2018_12_04-PM-02_24_26

Theory : euclidean!plane!geometry


Home Index