Nuprl Lemma : dist-bet_wf

[g1:EuclideanPlane]. ∀[a,b,c:Point].  (Dbet(g1;a;b;c) ∈ ℙ)


Proof




Definitions occuring in Statement :  dist-bet: Dbet(g;a;b;c) euclidean-plane: EuclideanPlane geo-point: Point uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T dist-bet: Dbet(g;a;b;c) subtype_rel: A ⊆B guard: {T} uimplies: supposing a
Lemmas referenced :  not_wf dist_wf geo-point_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry applyEquality instantiate independent_isectElimination isect_memberEquality because_Cache

Latex:
\mforall{}[g1:EuclideanPlane].  \mforall{}[a,b,c:Point].    (Dbet(g1;a;b;c)  \mmember{}  \mBbbP{})



Date html generated: 2019_10_16-PM-02_46_36
Last ObjectModification: 2018_09_14-PM-08_58_26

Theory : euclidean!plane!geometry


Home Index