Nuprl Lemma : PL-sep-or

g:ProjectivePlaneStructure. ∀a:Point. ∀l,m:Line.  (a ≠  (a ≠ m ∨ m ≠ l))


Proof




Definitions occuring in Statement :  projective-plane-structure: ProjectivePlaneStructure pgeo-lsep: l ≠ m pgeo-plsep: a ≠ b pgeo-line: Line pgeo-point: Point all: x:A. B[x] implies:  Q or: P ∨ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B prop:
Lemmas referenced :  pgeo-PLSepOr_wf pgeo-plsep_wf projective-plane-structure_subtype pgeo-line_wf pgeo-point_wf projective-plane-structure_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation introduction cut extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality dependent_set_memberEquality hypothesis isectElimination applyEquality because_Cache sqequalRule

Latex:
\mforall{}g:ProjectivePlaneStructure.  \mforall{}a:Point.  \mforall{}l,m:Line.    (a  \mneq{}  l  {}\mRightarrow{}  (a  \mneq{}  m  \mvee{}  m  \mneq{}  l))



Date html generated: 2018_05_22-PM-00_29_39
Last ObjectModification: 2017_11_10-PM-04_56_57

Theory : euclidean!plane!geometry


Home Index