Nuprl Lemma : PL-sep-or
∀g:ProjectivePlaneStructure. ∀a:Point. ∀l,m:Line.  (a ≠ l 
⇒ (a ≠ m ∨ m ≠ l))
Proof
Definitions occuring in Statement : 
projective-plane-structure: ProjectivePlaneStructure
, 
pgeo-lsep: l ≠ m
, 
pgeo-plsep: a ≠ b
, 
pgeo-line: Line
, 
pgeo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
Lemmas referenced : 
pgeo-PLSepOr_wf, 
pgeo-plsep_wf, 
projective-plane-structure_subtype, 
pgeo-line_wf, 
pgeo-point_wf, 
projective-plane-structure_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
dependent_set_memberEquality, 
hypothesis, 
isectElimination, 
applyEquality, 
because_Cache, 
sqequalRule
Latex:
\mforall{}g:ProjectivePlaneStructure.  \mforall{}a:Point.  \mforall{}l,m:Line.    (a  \mneq{}  l  {}\mRightarrow{}  (a  \mneq{}  m  \mvee{}  m  \mneq{}  l))
Date html generated:
2018_05_22-PM-00_29_39
Last ObjectModification:
2017_11_10-PM-04_56_57
Theory : euclidean!plane!geometry
Home
Index