Nuprl Lemma : pgeo-PLSepOr_wf
∀g:ProjectivePlaneStructure. ∀a:Point. ∀l:{l:Line| a ≠ l} . ∀m:Line.  (PLSepOr(a;l;m) ∈ a ≠ m ∨ m ≠ l)
Proof
Definitions occuring in Statement : 
pgeo-PLSepOr: PLSepOr(a;l;m)
, 
projective-plane-structure: ProjectivePlaneStructure
, 
pgeo-lsep: l ≠ m
, 
pgeo-plsep: a ≠ b
, 
pgeo-line: Line
, 
pgeo-point: Point
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
pgeo-PLSepOr: PLSepOr(a;l;m)
, 
projective-plane-structure: ProjectivePlaneStructure
, 
record+: record+, 
record-select: r.x
, 
subtype_rel: A ⊆r B
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
or: P ∨ Q
, 
sq_exists: ∃x:A [B[x]]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Lemmas referenced : 
subtype_rel_self, 
all_wf, 
pgeo-line_wf, 
pgeo-point_wf, 
sq_stable_wf, 
pgeo-plsep_wf, 
or_wf, 
pgeo-lsep_wf, 
pgeo-psep_wf, 
exists_wf, 
sq_exists_wf, 
pgeo-incident_wf, 
projective-plane-structure_subtype, 
set_wf, 
projective-plane-structure_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
setElimination, 
thin, 
rename, 
sqequalRule, 
sqequalHypSubstitution, 
dependentIntersectionElimination, 
dependentIntersectionEqElimination, 
hypothesis, 
applyEquality, 
tokenEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
lambdaEquality, 
hypothesisEquality, 
setEquality, 
functionEquality, 
productEquality, 
because_Cache, 
functionExtensionality, 
dependent_set_memberEquality
Latex:
\mforall{}g:ProjectivePlaneStructure.  \mforall{}a:Point.  \mforall{}l:\{l:Line|  a  \mneq{}  l\}  .  \mforall{}m:Line.
    (PLSepOr(a;l;m)  \mmember{}  a  \mneq{}  m  \mvee{}  m  \mneq{}  l)
Date html generated:
2018_05_22-PM-00_29_12
Last ObjectModification:
2017_10_27-AM-08_47_02
Theory : euclidean!plane!geometry
Home
Index