Nuprl Lemma : pgeo-PLSepOr_wf

g:ProjectivePlaneStructure. ∀a:Point. ∀l:{l:Line| a ≠ l} . ∀m:Line.  (PLSepOr(a;l;m) ∈ a ≠ m ∨ m ≠ l)


Proof




Definitions occuring in Statement :  pgeo-PLSepOr: PLSepOr(a;l;m) projective-plane-structure: ProjectivePlaneStructure pgeo-lsep: l ≠ m pgeo-plsep: a ≠ b pgeo-line: Line pgeo-point: Point all: x:A. B[x] or: P ∨ Q member: t ∈ T set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T pgeo-PLSepOr: PLSepOr(a;l;m) projective-plane-structure: ProjectivePlaneStructure record+: record+ record-select: r.x subtype_rel: A ⊆B eq_atom: =a y ifthenelse: if then else fi  btrue: tt uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] prop: or: P ∨ Q sq_exists: x:A [B[x]] exists: x:A. B[x] implies:  Q and: P ∧ Q
Lemmas referenced :  subtype_rel_self all_wf pgeo-line_wf pgeo-point_wf sq_stable_wf pgeo-plsep_wf or_wf pgeo-lsep_wf pgeo-psep_wf exists_wf sq_exists_wf pgeo-incident_wf projective-plane-structure_subtype set_wf projective-plane-structure_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut setElimination thin rename sqequalRule sqequalHypSubstitution dependentIntersectionElimination dependentIntersectionEqElimination hypothesis applyEquality tokenEquality introduction extract_by_obid isectElimination lambdaEquality hypothesisEquality setEquality functionEquality productEquality because_Cache functionExtensionality dependent_set_memberEquality

Latex:
\mforall{}g:ProjectivePlaneStructure.  \mforall{}a:Point.  \mforall{}l:\{l:Line|  a  \mneq{}  l\}  .  \mforall{}m:Line.
    (PLSepOr(a;l;m)  \mmember{}  a  \mneq{}  m  \mvee{}  m  \mneq{}  l)



Date html generated: 2018_05_22-PM-00_29_12
Last ObjectModification: 2017_10_27-AM-08_47_02

Theory : euclidean!plane!geometry


Home Index