Nuprl Lemma : basic-pgeo-axioms-imply
∀g:ProjectivePlaneStructure. (BasicProjectiveGeometryAxioms(g) 
⇒ ((∀a:Point. a ≡ a) ∧ (∀l:Line. l ≡ l)))
Proof
Definitions occuring in Statement : 
projective-plane-structure: ProjectivePlaneStructure
, 
basic-pgeo-axioms: BasicProjectiveGeometryAxioms(g)
, 
pgeo-leq: a ≡ b
, 
pgeo-peq: a ≡ b
, 
pgeo-line: Line
, 
pgeo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
pgeo-peq: a ≡ b
, 
not: ¬A
, 
stable: Stable{P}
, 
uimplies: b supposing a
, 
or: P ∨ Q
, 
false: False
, 
pgeo-psep: a ≠ b
, 
exists: ∃x:A. B[x]
, 
basic-pgeo-axioms: BasicProjectiveGeometryAxioms(g)
, 
pgeo-incident: a I b
, 
pgeo-leq: a ≡ b
, 
pgeo-lsep: l ≠ m
Lemmas referenced : 
pgeo-point_wf, 
projective-plane-structure_subtype, 
pgeo-line_wf, 
basic-pgeo-axioms_wf, 
projective-plane-structure_wf, 
stable__not, 
pgeo-psep_wf, 
false_wf, 
or_wf, 
pgeo-peq_wf, 
not_wf, 
minimal-double-negation-hyp-elim, 
minimal-not-not-excluded-middle, 
pgeo-leq_wf, 
pgeo-lsep_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
independent_pairFormation, 
because_Cache, 
functionEquality, 
independent_isectElimination, 
independent_functionElimination, 
unionElimination, 
voidElimination, 
productElimination, 
dependent_functionElimination
Latex:
\mforall{}g:ProjectivePlaneStructure
    (BasicProjectiveGeometryAxioms(g)  {}\mRightarrow{}  ((\mforall{}a:Point.  a  \mequiv{}  a)  \mwedge{}  (\mforall{}l:Line.  l  \mequiv{}  l)))
Date html generated:
2019_10_16-PM-02_11_49
Last ObjectModification:
2018_08_23-PM-01_56_06
Theory : euclidean!plane!geometry
Home
Index