Nuprl Lemma : extra-left-axiom_wf
∀[g:GeometryPrimitives]. (extra-left-axiom(g) ∈ ℙ)
Proof
Definitions occuring in Statement : 
extra-left-axiom: extra-left-axiom(g)
, 
geo-primitives: GeometryPrimitives
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
extra-left-axiom: extra-left-axiom(g)
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s]
Lemmas referenced : 
all_wf, 
geo-point_wf, 
geo-between_wf, 
geo-congruent_wf, 
geo-sep_wf, 
geo-lsep_wf, 
geo-primitives_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
because_Cache, 
functionEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[g:GeometryPrimitives].  (extra-left-axiom(g)  \mmember{}  \mBbbP{})
Date html generated:
2017_10_02-PM-03_27_17
Last ObjectModification:
2017_08_09-PM-02_07_50
Theory : euclidean!plane!geometry
Home
Index