Nuprl Lemma : geo-colinear-congruence2
∀e:BasicGeometry. ∀A,B,C,C':Point.  (A ≠ B 
⇒ Colinear(A;B;C) 
⇒ AC ≅ AC' 
⇒ BC ≅ BC' 
⇒ C ≡ C')
Proof
Definitions occuring in Statement : 
basic-geometry: BasicGeometry
, 
geo-colinear: Colinear(a;b;c)
, 
geo-eq: a ≡ b
, 
geo-congruent: ab ≅ cd
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
basic-geometry: BasicGeometry
, 
uimplies: b supposing a
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
geo-point_wf, 
geo-sep_wf, 
geo-colinear_wf, 
Error :basic-geo-primitives_wf, 
Error :basic-geo-structure_wf, 
basic-geometry_wf, 
subtype_rel_transitivity, 
basic-geometry-subtype, 
geo-congruent_wf, 
geo-colinear-congruence1, 
geo-congruence-identity
Rules used in proof : 
rename, 
setElimination, 
because_Cache, 
sqequalRule, 
independent_isectElimination, 
instantiate, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
independent_functionElimination, 
dependent_functionElimination
Latex:
\mforall{}e:BasicGeometry.  \mforall{}A,B,C,C':Point.    (A  \mneq{}  B  {}\mRightarrow{}  Colinear(A;B;C)  {}\mRightarrow{}  AC  \00D0  AC'  {}\mRightarrow{}  BC  \00D0  BC'  {}\mRightarrow{}  C  \mequiv{}  C')
Date html generated:
2017_10_02-PM-06_31_56
Last ObjectModification:
2017_08_05-PM-04_42_51
Theory : euclidean!plane!geometry
Home
Index