Nuprl Lemma : geo-colinear-preserves-parallel2

e:EuclideanPlane. ∀a,b,c,d,x,y:Point.
  (geo-parallel-points(e;a;b;c;d)
   Colinear(a;b;x)
   Colinear(c;d;y)
   c ≠ y
   a ≠ x
   geo-parallel-points(e;a;x;c;y))


Proof




Definitions occuring in Statement :  geo-parallel-points: geo-parallel-points(e;a;b;c;d) euclidean-plane: EuclideanPlane geo-colinear: Colinear(a;b;c) geo-sep: a ≠ b geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a prop:
Lemmas referenced :  geo-colinear-preserves-parallel geo-parallel-points-symmetry geo-sep_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-colinear_wf geo-parallel-points_wf geo-point_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination hypothesis because_Cache universeIsType isectElimination applyEquality instantiate independent_isectElimination sqequalRule inhabitedIsType

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,d,x,y:Point.
    (geo-parallel-points(e;a;b;c;d)
    {}\mRightarrow{}  Colinear(a;b;x)
    {}\mRightarrow{}  Colinear(c;d;y)
    {}\mRightarrow{}  c  \mneq{}  y
    {}\mRightarrow{}  a  \mneq{}  x
    {}\mRightarrow{}  geo-parallel-points(e;a;x;c;y))



Date html generated: 2019_10_16-PM-01_47_28
Last ObjectModification: 2019_08_23-PM-10_43_18

Theory : euclidean!plane!geometry


Home Index