Nuprl Lemma : geo-colinear-preserves-parallel

e:EuclideanPlane. ∀a,b,c,d,x:Point.
  (geo-parallel-points(e;a;b;c;d)  Colinear(a;b;x)  a ≠  geo-parallel-points(e;a;x;c;d))


Proof




Definitions occuring in Statement :  geo-parallel-points: geo-parallel-points(e;a;b;c;d) euclidean-plane: EuclideanPlane geo-colinear: Colinear(a;b;c) geo-sep: a ≠ b geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q geo-parallel-points: geo-parallel-points(e;a;b;c;d) and: P ∧ Q not: ¬A exists: x:A. B[x] member: t ∈ T subtype_rel: A ⊆B uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a l_member: (x ∈ l) nat: le: A ≤ B less_than': less_than'(a;b) false: False top: Top select: L[n] cons: [a b] cand: c∧ B less_than: a < b squash: T true: True ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) prop: subtract: m append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) int_seg: {i..j-} lelt: i ≤ j < k guard: {T}
Lemmas referenced :  subtype_rel_sets_simple geo-point_wf geo-colinear_wf geo-colinear-append cons_wf nil_wf istype-void istype-le length_of_cons_lemma length_of_nil_lemma istype-less_than length_wf select_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf geo-sep_wf l_member_wf geo-colinear-is-colinear-set list_ind_cons_lemma list_ind_nil_lemma decidable__lt intformless_wf int_formula_prop_less_lemma geo-left_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-parallel-points_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution productElimination thin independent_pairFormation hypothesis independent_functionElimination dependent_pairFormation_alt cut hypothesisEquality applyEquality introduction extract_by_obid isectElimination because_Cache sqequalRule lambdaEquality_alt inhabitedIsType independent_isectElimination dependent_functionElimination dependent_set_memberEquality_alt natural_numberEquality voidElimination isect_memberEquality_alt imageMemberEquality baseClosed productIsType setElimination rename equalityIstype unionElimination approximateComputation int_eqEquality universeIsType equalityTransitivity equalitySymmetry setIsType instantiate

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,d,x:Point.
    (geo-parallel-points(e;a;b;c;d)  {}\mRightarrow{}  Colinear(a;b;x)  {}\mRightarrow{}  a  \mneq{}  x  {}\mRightarrow{}  geo-parallel-points(e;a;x;c;d))



Date html generated: 2019_10_16-PM-01_46_44
Last ObjectModification: 2019_08_23-PM-10_00_50

Theory : euclidean!plane!geometry


Home Index