Nuprl Lemma : geo-colinear-trivial

e:BasicGeometry. ∀a,b:Point.  ((¬(a b ∈ Point))  (Colinear(a;b;b) ∧ Colinear(b;a;b)))


Proof




Definitions occuring in Statement :  basic-geometry: BasicGeometry geo-colinear: Colinear(a;b;c) geo-point: Point all: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q equal: t ∈ T
Definitions unfolded in proof :  uimplies: supposing a guard: {T} subtype_rel: A ⊆B prop: member: t ∈ T uall: [x:A]. B[x] cand: c∧ B and: P ∧ Q implies:  Q all: x:A. B[x]
Lemmas referenced :  Error :basic-geo-primitives_wf,  Error :basic-geo-structure_wf,  basic-geometry_wf subtype_rel_transitivity basic-geometry-subtype geo-point_wf equal_wf not_wf geo-colinear-same
Rules used in proof :  sqequalRule independent_isectElimination instantiate applyEquality because_Cache independent_pairFormation hypothesis productElimination hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b:Point.    ((\mneg{}(a  =  b))  {}\mRightarrow{}  (Colinear(a;b;b)  \mwedge{}  Colinear(b;a;b)))



Date html generated: 2017_10_02-PM-06_37_14
Last ObjectModification: 2017_08_05-PM-04_46_11

Theory : euclidean!plane!geometry


Home Index