Nuprl Lemma : geo-congruence-identity-eq

e:BasicGeometry. ∀a,b,c:Point.  ∀[d:Point]. (c ≡  ab ≅ cd  a ≡ b)


Proof




Definitions occuring in Statement :  basic-geometry: BasicGeometry geo-eq: a ≡ b geo-congruent: ab ≅ cd geo-point: Point uall: [x:A]. B[x] all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  and: P ∧ Q iff: ⇐⇒ Q false: False not: ¬A geo-eq: a ≡ b uimplies: supposing a guard: {T} subtype_rel: A ⊆B prop: implies:  Q member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x]
Lemmas referenced :  geo-eq_weakening geo-congruent_functionality geo-point_wf geo-sep_wf geo-eq_wf Error :basic-geo-primitives_wf,  Error :basic-geo-structure_wf,  basic-geometry_wf subtype_rel_transitivity basic-geometry-subtype geo-congruent_wf geo-congruence-identity-sym
Rules used in proof :  productElimination independent_functionElimination voidElimination dependent_functionElimination lambdaEquality because_Cache sqequalRule independent_isectElimination instantiate hypothesis applyEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c:Point.    \mforall{}[d:Point].  (c  \mequiv{}  d  {}\mRightarrow{}  ab  \00D0  cd  {}\mRightarrow{}  a  \mequiv{}  b)



Date html generated: 2017_10_02-PM-04_43_02
Last ObjectModification: 2017_08_05-AM-08_42_28

Theory : euclidean!plane!geometry


Home Index