Nuprl Lemma : geo-congruence-identity2

[e:BasicGeometry]. ∀[a,b,c,d:Point].  (a ≡ b) supposing (ab ≅ cd and c ≡ d)


Proof




Definitions occuring in Statement :  basic-geometry: BasicGeometry geo-eq: a ≡ b geo-congruent: ab ≅ cd geo-point: Point uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  and: P ∧ Q iff: ⇐⇒ Q all: x:A. B[x] prop: guard: {T} subtype_rel: A ⊆B false: False implies:  Q not: ¬A geo-eq: a ≡ b uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  geo-eq_weakening geo-congruent_functionality geo-congruence-identity-sym geo-point_wf geo-eq_wf geo-congruent_wf Error :basic-geo-primitives_wf,  Error :basic-geo-structure_wf,  basic-geometry_wf subtype_rel_transitivity basic-geometry-subtype geo-sep_wf
Rules used in proof :  productElimination independent_functionElimination voidElimination equalitySymmetry equalityTransitivity isect_memberEquality independent_isectElimination instantiate hypothesis applyEquality isectElimination extract_by_obid because_Cache hypothesisEquality thin dependent_functionElimination lambdaEquality sqequalHypSubstitution sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[e:BasicGeometry].  \mforall{}[a,b,c,d:Point].    (a  \mequiv{}  b)  supposing  (ab  \00D0  cd  and  c  \mequiv{}  d)



Date html generated: 2017_10_02-PM-04_42_56
Last ObjectModification: 2017_08_05-AM-08_42_24

Theory : euclidean!plane!geometry


Home Index