Nuprl Lemma : geo-congruence-identity2
∀[e:BasicGeometry]. ∀[a,b,c,d:Point].  (a ≡ b) supposing (ab ≅ cd and c ≡ d)
Proof
Definitions occuring in Statement : 
basic-geometry: BasicGeometry
, 
geo-eq: a ≡ b
, 
geo-congruent: ab ≅ cd
, 
geo-point: Point
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
geo-eq: a ≡ b
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
geo-eq_weakening, 
geo-congruent_functionality, 
geo-congruence-identity-sym, 
geo-point_wf, 
geo-eq_wf, 
geo-congruent_wf, 
Error :basic-geo-primitives_wf, 
Error :basic-geo-structure_wf, 
basic-geometry_wf, 
subtype_rel_transitivity, 
basic-geometry-subtype, 
geo-sep_wf
Rules used in proof : 
productElimination, 
independent_functionElimination, 
voidElimination, 
equalitySymmetry, 
equalityTransitivity, 
isect_memberEquality, 
independent_isectElimination, 
instantiate, 
hypothesis, 
applyEquality, 
isectElimination, 
extract_by_obid, 
because_Cache, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
lambdaEquality, 
sqequalHypSubstitution, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[e:BasicGeometry].  \mforall{}[a,b,c,d:Point].    (a  \mequiv{}  b)  supposing  (ab  \00D0  cd  and  c  \mequiv{}  d)
Date html generated:
2017_10_02-PM-04_42_56
Last ObjectModification:
2017_08_05-AM-08_42_24
Theory : euclidean!plane!geometry
Home
Index