Nuprl Lemma : geo-convex_wf
∀[g:BasicGeometry-]. ∀[P:Point ⟶ ℙ].  (IsConvex(x.P[x]) ∈ ℙ)
Proof
Definitions occuring in Statement : 
geo-convex: IsConvex(x.P[x])
, 
basic-geometry-: BasicGeometry-
, 
geo-point: Point
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
so_apply: x[s]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
geo-convex: IsConvex(x.P[x])
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
geo-between_wf, 
Error :basic-geo-primitives_wf, 
Error :basic-geo-structure_wf, 
basic-geometry-_wf, 
subtype_rel_transitivity, 
basic-geometry--subtype, 
geo-point_wf, 
all_wf
Rules used in proof : 
isect_memberEquality, 
cumulativity, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
universeEquality, 
functionExtensionality, 
functionEquality, 
because_Cache, 
lambdaEquality, 
independent_isectElimination, 
instantiate, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[g:BasicGeometry-].  \mforall{}[P:Point  {}\mrightarrow{}  \mBbbP{}].    (IsConvex(x.P[x])  \mmember{}  \mBbbP{})
Date html generated:
2017_10_02-PM-06_48_53
Last ObjectModification:
2017_08_08-PM-00_39_33
Theory : euclidean!plane!geometry
Home
Index