Nuprl Lemma : geo-convex_wf

[g:BasicGeometry-]. ∀[P:Point ⟶ ℙ].  (IsConvex(x.P[x]) ∈ ℙ)


Proof




Definitions occuring in Statement :  geo-convex: IsConvex(x.P[x]) basic-geometry-: BasicGeometry- geo-point: Point uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  so_apply: x[s] prop: implies:  Q so_lambda: λ2x.t[x] uimplies: supposing a guard: {T} subtype_rel: A ⊆B geo-convex: IsConvex(x.P[x]) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  geo-between_wf Error :basic-geo-primitives_wf,  Error :basic-geo-structure_wf,  basic-geometry-_wf subtype_rel_transitivity basic-geometry--subtype geo-point_wf all_wf
Rules used in proof :  isect_memberEquality cumulativity equalitySymmetry equalityTransitivity axiomEquality universeEquality functionExtensionality functionEquality because_Cache lambdaEquality independent_isectElimination instantiate hypothesis applyEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[g:BasicGeometry-].  \mforall{}[P:Point  {}\mrightarrow{}  \mBbbP{}].    (IsConvex(x.P[x])  \mmember{}  \mBbbP{})



Date html generated: 2017_10_02-PM-06_48_53
Last ObjectModification: 2017_08_08-PM-00_39_33

Theory : euclidean!plane!geometry


Home Index