Nuprl Lemma : geo-le-congruent

g:BasicGeometry. ∀a,b,c,d:Point.  ((|ab| ≤ |cd| ∧ |cd| ≤ |ab|)  ab ≅ cd)


Proof




Definitions occuring in Statement :  geo-le: p ≤ q geo-length: |s| geo-mk-seg: ab basic-geometry: BasicGeometry geo-congruent: ab ≅ cd geo-point: Point all: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q and: P ∧ Q member: t ∈ T uall: [x:A]. B[x] basic-geometry: BasicGeometry euclidean-plane: EuclideanPlane uimplies: supposing a uiff: uiff(P;Q) prop: subtype_rel: A ⊆B guard: {T}
Lemmas referenced :  geo-le_antisymmetry geo-length_wf geo-mk-seg_wf geo-congruent-iff-length geo-le_wf geo-point_wf euclidean-plane-structure-subtype euclidean-plane-subtype basic-geometry-subtype subtype_rel_transitivity basic-geometry_wf euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution productElimination thin cut introduction extract_by_obid dependent_functionElimination hypothesisEquality isectElimination setElimination rename hypothesis because_Cache independent_isectElimination equalitySymmetry sqequalRule productIsType universeIsType inhabitedIsType applyEquality instantiate

Latex:
\mforall{}g:BasicGeometry.  \mforall{}a,b,c,d:Point.    ((|ab|  \mleq{}  |cd|  \mwedge{}  |cd|  \mleq{}  |ab|)  {}\mRightarrow{}  ab  \mcong{}  cd)



Date html generated: 2019_10_16-PM-01_36_13
Last ObjectModification: 2018_10_03-PM-00_05_03

Theory : euclidean!plane!geometry


Home Index