Nuprl Lemma : geo-le_antisymmetry

e:BasicGeometry. ∀[p,q:Length].  (p q ∈ Length) supposing (q ≤ and p ≤ q)


Proof




Definitions occuring in Statement :  geo-le: p ≤ q geo-length-type: Length basic-geometry: BasicGeometry uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T geo-length-type: Length quotient: x,y:A//B[x; y] and: P ∧ Q subtype_rel: A ⊆B basic-geometry: BasicGeometry euclidean-plane: EuclideanPlane prop: so_lambda: λ2y.t[x; y] guard: {T} so_apply: x[s1;s2] implies:  Q iff: ⇐⇒ Q sq_stable: SqStable(P) squash: T cand: c∧ B basic-geometry-: BasicGeometry-
Lemmas referenced :  subtype-geo-length-type quotient-member-eq geo-point_wf geo-between_wf geo-O_wf geo-X_wf geo-eq_wf euclidean-plane-structure-subtype euclidean-plane-subtype basic-geometry-subtype subtype_rel_transitivity geo-length-equiv equal-wf-base basic-geometry_wf euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-le_wf geo-length-type_wf geo-le-iff-between-points sq_stable__geo-eq geo-between-symmetry geo-between-inner-trans geo-between-exchange4 subtype_rel_self basic-geometry-_wf geo-Op-sep geo-between-same geo-eq_transitivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis pointwiseFunctionalityForEquality because_Cache sqequalRule pertypeElimination productElimination setEquality applyEquality dependent_functionElimination setElimination rename lambdaEquality_alt universeIsType instantiate independent_isectElimination inhabitedIsType equalityTransitivity equalitySymmetry independent_functionElimination productEquality setIsType imageMemberEquality baseClosed imageElimination independent_pairFormation dependent_set_memberEquality_alt

Latex:
\mforall{}e:BasicGeometry.  \mforall{}[p,q:Length].    (p  =  q)  supposing  (q  \mleq{}  p  and  p  \mleq{}  q)



Date html generated: 2019_10_16-PM-01_35_18
Last ObjectModification: 2018_10_03-PM-00_21_09

Theory : euclidean!plane!geometry


Home Index