Nuprl Lemma : geo-le-iff-between
∀g:EuclideanPlane. ∀s1,s2:geo-segment(g).  (|s1| ≤ |s2| 
⇐⇒ X_|s1|_|s2|)
Proof
Definitions occuring in Statement : 
geo-le: p ≤ q
, 
geo-length: |s|
, 
geo-segment: geo-segment(e)
, 
geo-X: X
, 
euclidean-plane: EuclideanPlane
, 
geo-between: a_b_c
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
basic-geometry: BasicGeometry
, 
euclidean-plane: EuclideanPlane
Lemmas referenced : 
geo-le-iff-between-points, 
geo-length_wf1, 
geo-segment_wf, 
euclidean-plane_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
sqequalRule, 
hypothesis, 
inhabitedIsType, 
universeIsType, 
setElimination, 
rename
Latex:
\mforall{}g:EuclideanPlane.  \mforall{}s1,s2:geo-segment(g).    (|s1|  \mleq{}  |s2|  \mLeftarrow{}{}\mRightarrow{}  X\_|s1|\_|s2|)
Date html generated:
2019_10_16-PM-01_34_13
Last ObjectModification:
2018_10_03-AM-11_18_12
Theory : euclidean!plane!geometry
Home
Index