Nuprl Lemma : geo-le-pt-exists

e:BasicGeometry. ∀a,b,c,d:Point.  (a ≠  ab≤cd  (∃x:Point. (a_b_x ∧ ax ≅ cd)))


Proof




Definitions occuring in Statement :  geo-le-pt: ab≤cd basic-geometry: BasicGeometry geo-congruent: ab ≅ cd geo-between: a_b_c geo-sep: a ≠ b geo-point: Point all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  uimplies: supposing a guard: {T} subtype_rel: A ⊆B basic-geometry: BasicGeometry uall: [x:A]. B[x] prop: member: t ∈ T and: P ∧ Q exists: x:A. B[x] geo-le-pt: ab≤cd implies:  Q all: x:A. B[x] true: True squash: T uiff: uiff(P;Q) cand: c∧ B
Lemmas referenced :  geo-point_wf Error :basic-geo-primitives_wf,  Error :basic-geo-structure_wf,  basic-geometry_wf subtype_rel_transitivity basic-geometry-subtype geo-sep_wf geo-le-pt_wf geo-extend-exists geo-mk-seg_wf geo-length_wf geo-length-type_wf equal_wf and_wf geo-add-length_wf geo-congruent-iff-length geo-add-length-between true_wf squash_wf geo-congruent_wf geo-between_wf
Rules used in proof :  because_Cache sqequalRule independent_isectElimination instantiate applyEquality hypothesis hypothesisEquality rename setElimination isectElimination extract_by_obid introduction cut thin productElimination sqequalHypSubstitution lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution independent_functionElimination dependent_functionElimination hyp_replacement applyLambdaEquality equalityTransitivity independent_pairFormation dependent_set_memberEquality baseClosed imageMemberEquality natural_numberEquality equalitySymmetry imageElimination lambdaEquality productEquality dependent_pairFormation

Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c,d:Point.    (a  \mneq{}  b  {}\mRightarrow{}  ab\mleq{}cd  {}\mRightarrow{}  (\mexists{}x:Point.  (a\_b\_x  \mwedge{}  ax  \00D0  cd)))



Date html generated: 2017_10_02-PM-06_45_57
Last ObjectModification: 2017_08_05-PM-04_50_57

Theory : euclidean!plane!geometry


Home Index