Nuprl Lemma : geo-line-pt-sep
∀eu:EuclideanPlane. ∀l:Line.  fst(l) ≠ fst(snd(l))
Proof
Definitions occuring in Statement : 
geo-line: Line
, 
euclidean-plane: EuclideanPlane
, 
geo-sep: a ≠ b
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
uimplies: b supposing a
, 
guard: {T}
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
geo-line: Line
, 
all: ∀x:A. B[x]
Lemmas referenced : 
geo-primitives_wf, 
euclidean-plane-structure_wf, 
euclidean-plane_wf, 
subtype_rel_transitivity, 
euclidean-plane-subtype, 
euclidean-plane-structure-subtype, 
geo-line_wf
Rules used in proof : 
independent_isectElimination, 
isectElimination, 
instantiate, 
applyEquality, 
hypothesisEquality, 
dependent_functionElimination, 
extract_by_obid, 
introduction, 
cut, 
hypothesis, 
sqequalRule, 
thin, 
productElimination, 
sqequalHypSubstitution, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}eu:EuclideanPlane.  \mforall{}l:Line.    fst(l)  \mneq{}  fst(snd(l))
Date html generated:
2018_07_29-AM-09_35_32
Last ObjectModification:
2018_06_19-PM-01_24_54
Theory : euclidean!plane!geometry
Home
Index