Nuprl Lemma : geo-line-pt-sep

eu:EuclideanPlane. ∀l:Line.  fst(l) ≠ fst(snd(l))


Proof




Definitions occuring in Statement :  geo-line: Line euclidean-plane: EuclideanPlane geo-sep: a ≠ b pi1: fst(t) pi2: snd(t) all: x:A. B[x]
Definitions unfolded in proof :  uimplies: supposing a guard: {T} uall: [x:A]. B[x] subtype_rel: A ⊆B member: t ∈ T pi2: snd(t) pi1: fst(t) geo-line: Line all: x:A. B[x]
Lemmas referenced :  geo-primitives_wf euclidean-plane-structure_wf euclidean-plane_wf subtype_rel_transitivity euclidean-plane-subtype euclidean-plane-structure-subtype geo-line_wf
Rules used in proof :  independent_isectElimination isectElimination instantiate applyEquality hypothesisEquality dependent_functionElimination extract_by_obid introduction cut hypothesis sqequalRule thin productElimination sqequalHypSubstitution lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}eu:EuclideanPlane.  \mforall{}l:Line.    fst(l)  \mneq{}  fst(snd(l))



Date html generated: 2018_07_29-AM-09_35_32
Last ObjectModification: 2018_06_19-PM-01_24_54

Theory : euclidean!plane!geometry


Home Index