Nuprl Lemma : geo-lt-add1_1
∀e:BasicGeometry. ∀p,q,r:Length.  (p < q 
⇒ p < q + r)
Proof
Definitions occuring in Statement : 
geo-lt: p < q
, 
geo-add-length: p + q
, 
geo-length-type: Length
, 
basic-geometry: BasicGeometry
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
geo-lt: p < q
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
cand: A c∧ B
, 
uall: ∀[x:A]. B[x]
, 
basic-geometry: BasicGeometry
, 
euclidean-plane: EuclideanPlane
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
prop: ℙ
Lemmas referenced : 
geo-le-add1, 
geo-le_transitivity, 
geo-add-length_wf, 
geo-length_wf, 
geo-mk-seg_wf, 
geo-sep_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
basic-geometry-subtype, 
subtype_rel_transitivity, 
basic-geometry_wf, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-le_wf, 
geo-lt_wf, 
geo-length-type_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_pairFormation_alt, 
hypothesisEquality, 
cut, 
hypothesis, 
independent_pairFormation, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
isectElimination, 
because_Cache, 
setElimination, 
rename, 
independent_isectElimination, 
sqequalRule, 
productIsType, 
universeIsType, 
applyEquality, 
instantiate, 
inhabitedIsType
Latex:
\mforall{}e:BasicGeometry.  \mforall{}p,q,r:Length.    (p  <  q  {}\mRightarrow{}  p  <  q  +  r)
Date html generated:
2019_10_16-PM-01_35_05
Last ObjectModification:
2019_01_31-PM-02_55_11
Theory : euclidean!plane!geometry
Home
Index