Nuprl Lemma : geo-le_transitivity

e:BasicGeometry. ∀[p,q,r:Length].  (p ≤ r) supposing (q ≤ and p ≤ q)


Proof




Definitions occuring in Statement :  geo-le: p ≤ q geo-length-type: Length basic-geometry: BasicGeometry uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T sq_stable: SqStable(P) implies:  Q geo-length-type: Length prop: quotient: x,y:A//B[x; y] and: P ∧ Q subtype_rel: A ⊆B guard: {T} basic-geometry: BasicGeometry euclidean-plane: EuclideanPlane basic-geometry-: BasicGeometry- squash: T
Lemmas referenced :  sq_stable__geo-le subtype-geo-length-type geo-le_wf geo-le_witness geo-le_imp geo-between-symmetry geo-X_wf geo-between-inner-trans geo-between-exchange3 subtype_rel_self euclidean-plane-structure_wf basic-geo-axioms_wf euclidean-plane-structure-subtype geo-left-axioms_wf geo-between-exchange4 equal-wf-base geo-eq_wf euclidean-plane-subtype basic-geometry-subtype subtype_rel_transitivity basic-geometry_wf euclidean-plane_wf geo-primitives_wf geo-length-type_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_functionElimination because_Cache pointwiseFunctionalityForEquality sqequalRule pertypeElimination productElimination equalityTransitivity equalitySymmetry applyEquality independent_isectElimination dependent_functionElimination setElimination rename lambdaEquality instantiate setEquality productEquality cumulativity imageMemberEquality baseClosed imageElimination

Latex:
\mforall{}e:BasicGeometry.  \mforall{}[p,q,r:Length].    (p  \mleq{}  r)  supposing  (q  \mleq{}  r  and  p  \mleq{}  q)



Date html generated: 2017_10_02-PM-04_52_31
Last ObjectModification: 2017_08_17-PM-01_40_26

Theory : euclidean!plane!geometry


Home Index