Nuprl Lemma : geo-le_transitivity
∀e:BasicGeometry. ∀[p,q,r:Length].  (p ≤ r) supposing (q ≤ r and p ≤ q)
Proof
Definitions occuring in Statement : 
geo-le: p ≤ q
, 
geo-length-type: Length
, 
basic-geometry: BasicGeometry
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
geo-length-type: Length
, 
prop: ℙ
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
basic-geometry: BasicGeometry
, 
euclidean-plane: EuclideanPlane
, 
basic-geometry-: BasicGeometry-
, 
squash: ↓T
Lemmas referenced : 
sq_stable__geo-le, 
subtype-geo-length-type, 
geo-le_wf, 
geo-le_witness, 
geo-le_imp, 
geo-between-symmetry, 
geo-X_wf, 
geo-between-inner-trans, 
geo-between-exchange3, 
subtype_rel_self, 
euclidean-plane-structure_wf, 
basic-geo-axioms_wf, 
euclidean-plane-structure-subtype, 
geo-left-axioms_wf, 
geo-between-exchange4, 
equal-wf-base, 
geo-eq_wf, 
euclidean-plane-subtype, 
basic-geometry-subtype, 
subtype_rel_transitivity, 
basic-geometry_wf, 
euclidean-plane_wf, 
geo-primitives_wf, 
geo-length-type_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
because_Cache, 
pointwiseFunctionalityForEquality, 
sqequalRule, 
pertypeElimination, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
independent_isectElimination, 
dependent_functionElimination, 
setElimination, 
rename, 
lambdaEquality, 
instantiate, 
setEquality, 
productEquality, 
cumulativity, 
imageMemberEquality, 
baseClosed, 
imageElimination
Latex:
\mforall{}e:BasicGeometry.  \mforall{}[p,q,r:Length].    (p  \mleq{}  r)  supposing  (q  \mleq{}  r  and  p  \mleq{}  q)
Date html generated:
2017_10_02-PM-04_52_31
Last ObjectModification:
2017_08_17-PM-01_40_26
Theory : euclidean!plane!geometry
Home
Index