Nuprl Lemma : geo-lt-angle-in-half-plane-point-exists
∀e:EuclideanPlane. ∀w,x,y,z:Point.  (xyz < wyz 
⇒ w leftof yz 
⇒ x leftof yz 
⇒ (∃q:Point. (w-q-z ∧ out(y qx))))
Proof
Definitions occuring in Statement : 
geo-lt-angle: abc < xyz
, 
geo-out: out(p ab)
, 
euclidean-plane: EuclideanPlane
, 
geo-strict-between: a-b-c
, 
geo-left: a leftof bc
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
basic-geometry: BasicGeometry
, 
or: P ∨ Q
Lemmas referenced : 
geo-lt-angle-in-half-plane-implies-left, 
use-plane-sep_strict, 
geo-left_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-lt-angle_wf, 
geo-point_wf, 
left-symmetry, 
geo-strict-between_wf, 
geo-out_wf, 
geo-colinear-left-out2, 
left-convex, 
geo-strict-between-implies-between, 
geo-between-symmetry, 
geo-strict-between-sep3, 
geo-between_wf, 
geo-out_inversion
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
because_Cache, 
universeIsType, 
isectElimination, 
applyEquality, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
inhabitedIsType, 
productElimination, 
dependent_pairFormation_alt, 
independent_pairFormation, 
productIsType, 
inrFormation_alt
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}w,x,y,z:Point.
    (xyz  <  wyz  {}\mRightarrow{}  w  leftof  yz  {}\mRightarrow{}  x  leftof  yz  {}\mRightarrow{}  (\mexists{}q:Point.  (w-q-z  \mwedge{}  out(y  qx))))
Date html generated:
2019_10_16-PM-02_29_37
Last ObjectModification:
2019_03_19-PM-04_12_51
Theory : euclidean!plane!geometry
Home
Index