Nuprl Lemma : geo-lt-angle-symm2

g:EuclideanPlane. ∀a,b,c,d,e,f:Point.  (abc < def  cba < def)


Proof




Definitions occuring in Statement :  geo-lt-angle: abc < xyz euclidean-plane: EuclideanPlane geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a geo-lt-angle: abc < xyz and: P ∧ Q exists: x:A. B[x] basic-geometry: BasicGeometry cand: c∧ B geo-cong-angle: abc ≅a xyz
Lemmas referenced :  geo-lt-angle_wf geo-point_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-cong-angle-preserves-lt-angle geo-cong-angle-symm euclidean-plane-axioms
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt universeIsType cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis inhabitedIsType isectElimination applyEquality instantiate independent_isectElimination sqequalRule independent_functionElimination productElimination independent_pairFormation because_Cache

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,d,e,f:Point.    (abc  <  def  {}\mRightarrow{}  cba  <  def)



Date html generated: 2019_10_16-PM-02_01_38
Last ObjectModification: 2019_09_12-AM-11_37_45

Theory : euclidean!plane!geometry


Home Index