Step
*
2
1
1
3
of Lemma
geo-lt-lengths-to-sep
1. e : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. |ab| < |ac|
6. a # c
7. a # b
8. |bc| < |ac|
9. w : Point
10. B(awc)
11. aw ≅ ab
12. w # c
13. w # b
14. Colinear(a;b;c)
15. b-c-a
⊢ False
BY
{ (((Assert ab > ac BY (D 0 THEN Auto)) THEN FLemma `geo-lt-implies-gt-strong` [5] THEN Auto)
THEN (InstLemma `geo-gt-trans` [⌜e⌝;⌜a⌝;⌜c⌝;⌜a⌝;⌜b⌝;⌜a⌝;⌜c⌝]⋅ THEN Auto)
THEN InstLemma `geo-gt-irrefl` [⌜e⌝]⋅
THEN Auto) }
Latex:
Latex:
1. e : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. |ab| < |ac|
6. a \# c
7. a \# b
8. |bc| < |ac|
9. w : Point
10. B(awc)
11. aw \mcong{} ab
12. w \# c
13. w \# b
14. Colinear(a;b;c)
15. b-c-a
\mvdash{} False
By
Latex:
(((Assert ab > ac BY (D 0 THEN Auto)) THEN FLemma `geo-lt-implies-gt-strong` [5] THEN Auto)
THEN (InstLemma `geo-gt-trans` [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{}]\mcdot{} THEN Auto)
THEN InstLemma `geo-gt-irrefl` [\mkleeneopen{}e\mkleeneclose{}]\mcdot{}
THEN Auto)
Home
Index