Step
*
2
1
1
of Lemma
geo-lt-lengths-to-sep
.....assertion..... 
1. e : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. |ab| < |ac|
6. a # c
7. a # b
8. |bc| < |ac|
9. w : Point
10. B(awc)
11. aw ≅ ab
12. w # c
13. w # b
⊢ ¬Colinear(a;b;c)
BY
{ ((D 0 THENA Auto) THEN gColinearCases (-1) THEN Auto) }
1
1. e : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. |ab| < |ac|
6. a # c
7. a # b
8. |bc| < |ac|
9. w : Point
10. B(awc)
11. aw ≅ ab
12. w # c
13. w # b
14. Colinear(a;b;c)
15. b ≡ c
⊢ False
2
1. e : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. |ab| < |ac|
6. a # c
7. a # b
8. |bc| < |ac|
9. w : Point
10. B(awc)
11. aw ≅ ab
12. w # c
13. w # b
14. Colinear(a;b;c)
15. a-b-c
⊢ False
3
1. e : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. |ab| < |ac|
6. a # c
7. a # b
8. |bc| < |ac|
9. w : Point
10. B(awc)
11. aw ≅ ab
12. w # c
13. w # b
14. Colinear(a;b;c)
15. b-c-a
⊢ False
4
1. e : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. |ab| < |ac|
6. a # c
7. a # b
8. |bc| < |ac|
9. w : Point
10. B(awc)
11. aw ≅ ab
12. w # c
13. w # b
14. Colinear(a;b;c)
15. c-a-b
⊢ False
Latex:
Latex:
.....assertion..... 
1.  e  :  EuclideanPlane
2.  a  :  Point
3.  b  :  Point
4.  c  :  Point
5.  |ab|  <  |ac|
6.  a  \#  c
7.  a  \#  b
8.  |bc|  <  |ac|
9.  w  :  Point
10.  B(awc)
11.  aw  \mcong{}  ab
12.  w  \#  c
13.  w  \#  b
\mvdash{}  \mneg{}Colinear(a;b;c)
By
Latex:
((D  0  THENA  Auto)  THEN  gColinearCases  (-1)  THEN  Auto)
Home
Index