Nuprl Lemma : geo-lt-null-segment2
∀e:BasicGeometry. ∀[p:Length]. ∀[a,b:Point].  (False) supposing (a ≡ b and p < |ab|)
Proof
Definitions occuring in Statement : 
geo-lt: p < q
, 
geo-length: |s|
, 
geo-length-type: Length
, 
geo-mk-seg: ab
, 
basic-geometry: BasicGeometry
, 
geo-eq: a ≡ b
, 
geo-point: Point
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
false: False
Definitions unfolded in proof : 
basic-geometry: BasicGeometry
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
false: False
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
geo-eq: a ≡ b
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
Lemmas referenced : 
geo-length-type_wf, 
geo-point_wf, 
geo-mk-seg_wf, 
geo-length_wf, 
geo-lt_wf, 
Error :basic-geo-primitives_wf, 
Error :basic-geo-structure_wf, 
basic-geometry_wf, 
subtype_rel_transitivity, 
basic-geometry-subtype, 
geo-eq_wf, 
geo-zero-le, 
geo-zero-length_wf, 
geo-lt_transitivity, 
geo-zero-lt-iff
Rules used in proof : 
voidElimination, 
rename, 
setElimination, 
equalitySymmetry, 
equalityTransitivity, 
isect_memberEquality, 
independent_isectElimination, 
instantiate, 
applyEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
extract_by_obid, 
because_Cache, 
sqequalHypSubstitution, 
sqequalRule, 
hypothesis, 
cut, 
introduction, 
isect_memberFormation, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
independent_functionElimination, 
dependent_functionElimination, 
productElimination
Latex:
\mforall{}e:BasicGeometry.  \mforall{}[p:Length].  \mforall{}[a,b:Point].    (False)  supposing  (a  \mequiv{}  b  and  p  <  |ab|)
Date html generated:
2017_10_02-PM-06_19_25
Last ObjectModification:
2017_08_05-PM-04_13_52
Theory : euclidean!plane!geometry
Home
Index