Nuprl Lemma : geo-midpoint_functionality

e:BasicGeometry. ∀m,a,b,m',a',b':Point.  (m ≡ m'  a ≡ a'  b ≡ b'  {a=m=b  a'=m'=b'})


Proof




Definitions occuring in Statement :  geo-midpoint: a=m=b basic-geometry: BasicGeometry geo-eq: a ≡ b geo-point: Point guard: {T} all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] prop: member: t ∈ T cand: c∧ B and: P ∧ Q implies:  Q all: x:A. B[x] guard: {T} geo-midpoint: a=m=b iff: ⇐⇒ Q
Lemmas referenced :  geo-point_wf geo-eq_wf geo-congruent_wf Error :basic-geo-primitives_wf,  Error :basic-geo-structure_wf,  basic-geometry_wf subtype_rel_transitivity basic-geometry-subtype geo-between_wf geo-between_functionality geo-eq_weakening geo-congruent_functionality
Rules used in proof :  because_Cache independent_isectElimination instantiate applyEquality hypothesisEquality isectElimination extract_by_obid introduction productEquality hypothesis independent_pairFormation cut thin productElimination sqequalHypSubstitution lambdaFormation computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution independent_functionElimination dependent_functionElimination

Latex:
\mforall{}e:BasicGeometry.  \mforall{}m,a,b,m',a',b':Point.    (m  \mequiv{}  m'  {}\mRightarrow{}  a  \mequiv{}  a'  {}\mRightarrow{}  b  \mequiv{}  b'  {}\mRightarrow{}  \{a=m=b  {}\mRightarrow{}  a'=m'=b'\})



Date html generated: 2017_10_02-PM-04_45_45
Last ObjectModification: 2017_08_05-AM-11_45_50

Theory : euclidean!plane!geometry


Home Index