Nuprl Lemma : geo-perp-irrefl

[e:BasicGeometry]. ∀[a,b:Point].  (ab ⊥ ab  a ≡ b)


Proof




Definitions occuring in Statement :  geo-perp: ab ⊥ cd basic-geometry: BasicGeometry geo-eq: a ≡ b geo-point: Point uall: [x:A]. B[x] implies:  Q
Definitions unfolded in proof :  subtype_rel: A ⊆B false: False not: ¬A geo-eq: a ≡ b prop: uimplies: supposing a guard: {T} geo-perp-in: ab  ⊥cd all: x:A. B[x] cand: c∧ B and: P ∧ Q exists: x:A. B[x] geo-perp: ab ⊥ cd implies:  Q member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  geo-point_wf Error :basic-geo-primitives_wf,  Error :basic-geo-structure_wf,  basic-geometry_wf subtype_rel_transitivity basic-geometry-subtype geo-sep_wf geo-perp_wf geo-eq_transitivity geo-eq_inversion geo-colinear-same right-angle-legs-same
Rules used in proof :  voidElimination isect_memberEquality instantiate applyEquality lambdaEquality sqequalRule independent_isectElimination independent_pairFormation isectElimination because_Cache hypothesis independent_functionElimination hypothesisEquality dependent_functionElimination extract_by_obid thin productElimination sqequalHypSubstitution lambdaFormation cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[e:BasicGeometry].  \mforall{}[a,b:Point].    (ab  \mbot{}  ab  {}\mRightarrow{}  a  \mequiv{}  b)



Date html generated: 2017_10_02-PM-06_43_35
Last ObjectModification: 2017_08_05-PM-04_49_31

Theory : euclidean!plane!geometry


Home Index