Nuprl Lemma : geo-seg-congruent_functionality
∀e:BasicGeometry. ∀s1,s2,t1,t2:geo-segment(e).
  (geo-seg-congruent(e; s1; t1)
  
⇒ geo-seg-congruent(e; s2; t2)
  
⇒ (geo-seg-congruent(e; s1; s2) 
⇐⇒ geo-seg-congruent(e; t1; t2)))
Proof
Definitions occuring in Statement : 
geo-seg-congruent: geo-seg-congruent(e; s1; s2)
, 
geo-segment: geo-segment(e)
, 
basic-geometry: BasicGeometry
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
basic-geometry: BasicGeometry
, 
euclidean-plane: EuclideanPlane
, 
rev_implies: P 
⇐ Q
, 
uimplies: b supposing a
Lemmas referenced : 
geo-seg-congruent_wf, 
geo-segment_wf, 
basic-geometry_wf, 
geo-seg-congruent_transitivity, 
geo-seg-congruent_symmetry
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
dependent_functionElimination, 
independent_isectElimination
Latex:
\mforall{}e:BasicGeometry.  \mforall{}s1,s2,t1,t2:geo-segment(e).
    (geo-seg-congruent(e;  s1;  t1)
    {}\mRightarrow{}  geo-seg-congruent(e;  s2;  t2)
    {}\mRightarrow{}  (geo-seg-congruent(e;  s1;  s2)  \mLeftarrow{}{}\mRightarrow{}  geo-seg-congruent(e;  t1;  t2)))
Date html generated:
2019_10_16-PM-01_15_03
Last ObjectModification:
2018_09_15-AM-10_16_42
Theory : euclidean!plane!geometry
Home
Index