Nuprl Lemma : geo-seg-congruent_functionality

e:BasicGeometry. ∀s1,s2,t1,t2:geo-segment(e).
  (geo-seg-congruent(e; s1; t1)
   geo-seg-congruent(e; s2; t2)
   (geo-seg-congruent(e; s1; s2) ⇐⇒ geo-seg-congruent(e; t1; t2)))


Proof




Definitions occuring in Statement :  geo-seg-congruent: geo-seg-congruent(e; s1; s2) geo-segment: geo-segment(e) basic-geometry: BasicGeometry all: x:A. B[x] iff: ⇐⇒ Q implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T prop: uall: [x:A]. B[x] basic-geometry: BasicGeometry euclidean-plane: EuclideanPlane rev_implies:  Q uimplies: supposing a
Lemmas referenced :  geo-seg-congruent_wf geo-segment_wf basic-geometry_wf geo-seg-congruent_transitivity geo-seg-congruent_symmetry
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis because_Cache dependent_functionElimination independent_isectElimination

Latex:
\mforall{}e:BasicGeometry.  \mforall{}s1,s2,t1,t2:geo-segment(e).
    (geo-seg-congruent(e;  s1;  t1)
    {}\mRightarrow{}  geo-seg-congruent(e;  s2;  t2)
    {}\mRightarrow{}  (geo-seg-congruent(e;  s1;  s2)  \mLeftarrow{}{}\mRightarrow{}  geo-seg-congruent(e;  t1;  t2)))



Date html generated: 2019_10_16-PM-01_15_03
Last ObjectModification: 2018_09_15-AM-10_16_42

Theory : euclidean!plane!geometry


Home Index