Nuprl Lemma : geo-seg-congruent_wf

[e:EuclideanPlaneStructure]. ∀[s1,s2:geo-segment(e)].  (geo-seg-congruent(e; s1; s2) ∈ ℙ)


Proof




Definitions occuring in Statement :  geo-seg-congruent: geo-seg-congruent(e; s1; s2) geo-segment: geo-segment(e) euclidean-plane-structure: EuclideanPlaneStructure uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  subtype_rel: A ⊆B geo-seg-congruent: geo-seg-congruent(e; s1; s2) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  euclidean-plane-structure_wf geo-segment_wf geo-seg2_wf geo-seg1_wf euclidean-plane-structure-subtype geo-congruent_wf
Rules used in proof :  because_Cache isect_memberEquality equalitySymmetry equalityTransitivity axiomEquality hypothesis applyEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[e:EuclideanPlaneStructure].  \mforall{}[s1,s2:geo-segment(e)].    (geo-seg-congruent(e;  s1;  s2)  \mmember{}  \mBbbP{})



Date html generated: 2017_10_02-PM-04_44_50
Last ObjectModification: 2017_08_05-AM-09_28_05

Theory : euclidean!plane!geometry


Home Index