Nuprl Lemma : geo-tar-same-side-invariant

e:BasicGeometry. ∀A,B,P,Q,C,D:Point.
  (C ≠  Colinear(C;P;Q)  Colinear(D;P;Q)  geo-tar-same-side(e;A;B;P;Q)  geo-tar-same-side(e;A;B;C;D))


Proof




Definitions occuring in Statement :  geo-tar-same-side: geo-tar-same-side(e;a;b;p;q) basic-geometry: BasicGeometry geo-colinear: Colinear(a;b;c) geo-sep: a ≠ b geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q geo-tar-same-side: geo-tar-same-side(e;a;b;p;q) exists: x:A. B[x] member: t ∈ T and: P ∧ Q cand: c∧ B uall: [x:A]. B[x] prop: subtype_rel: A ⊆B guard: {T} uimplies: supposing a
Lemmas referenced :  geo-tar-opp-side-invariant geo-tar-opp-side_wf geo-tar-same-side_wf geo-colinear_wf euclidean-plane-structure-subtype euclidean-plane-subtype basic-geometry-subtype subtype_rel_transitivity basic-geometry_wf euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-sep_wf geo-point_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution productElimination thin dependent_pairFormation_alt hypothesisEquality independent_pairFormation cut hypothesis introduction extract_by_obid dependent_functionElimination independent_functionElimination because_Cache sqequalRule functionIsType universeIsType isectElimination productIsType applyEquality instantiate independent_isectElimination inhabitedIsType

Latex:
\mforall{}e:BasicGeometry.  \mforall{}A,B,P,Q,C,D:Point.
    (C  \mneq{}  D
    {}\mRightarrow{}  Colinear(C;P;Q)
    {}\mRightarrow{}  Colinear(D;P;Q)
    {}\mRightarrow{}  geo-tar-same-side(e;A;B;P;Q)
    {}\mRightarrow{}  geo-tar-same-side(e;A;B;C;D))



Date html generated: 2019_10_16-PM-01_21_45
Last ObjectModification: 2018_12_11-PM-00_22_19

Theory : euclidean!plane!geometry


Home Index