Nuprl Lemma : geo-tar-same-side-invariant
∀e:BasicGeometry. ∀A,B,P,Q,C,D:Point.
  (C ≠ D 
⇒ Colinear(C;P;Q) 
⇒ Colinear(D;P;Q) 
⇒ geo-tar-same-side(e;A;B;P;Q) 
⇒ geo-tar-same-side(e;A;B;C;D))
Proof
Definitions occuring in Statement : 
geo-tar-same-side: geo-tar-same-side(e;a;b;p;q)
, 
basic-geometry: BasicGeometry
, 
geo-colinear: Colinear(a;b;c)
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
geo-tar-same-side: geo-tar-same-side(e;a;b;p;q)
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
Lemmas referenced : 
geo-tar-opp-side-invariant, 
geo-tar-opp-side_wf, 
geo-tar-same-side_wf, 
geo-colinear_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
basic-geometry-subtype, 
subtype_rel_transitivity, 
basic-geometry_wf, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-sep_wf, 
geo-point_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_pairFormation_alt, 
hypothesisEquality, 
independent_pairFormation, 
cut, 
hypothesis, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
independent_functionElimination, 
because_Cache, 
sqequalRule, 
functionIsType, 
universeIsType, 
isectElimination, 
productIsType, 
applyEquality, 
instantiate, 
independent_isectElimination, 
inhabitedIsType
Latex:
\mforall{}e:BasicGeometry.  \mforall{}A,B,P,Q,C,D:Point.
    (C  \mneq{}  D
    {}\mRightarrow{}  Colinear(C;P;Q)
    {}\mRightarrow{}  Colinear(D;P;Q)
    {}\mRightarrow{}  geo-tar-same-side(e;A;B;P;Q)
    {}\mRightarrow{}  geo-tar-same-side(e;A;B;C;D))
Date html generated:
2019_10_16-PM-01_21_45
Last ObjectModification:
2018_12_11-PM-00_22_19
Theory : euclidean!plane!geometry
Home
Index