Nuprl Lemma : geo-tar-opp-side-invariant

e:BasicGeometry. ∀A,B,P,Q,C,D:Point.
  (C ≠  Colinear(C;P;Q)  Colinear(D;P;Q)  geo-tar-opp-side(e;A;B;P;Q)  geo-tar-opp-side(e;A;B;C;D))


Proof




Definitions occuring in Statement :  geo-tar-opp-side: geo-tar-opp-side(e;a;b;p;q) basic-geometry: BasicGeometry geo-colinear: Colinear(a;b;c) geo-sep: a ≠ b geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q geo-tar-opp-side: geo-tar-opp-side(e;a;b;p;q) and: P ∧ Q exists: x:A. B[x] cand: c∧ B member: t ∈ T subtype_rel: A ⊆B uall: [x:A]. B[x] guard: {T} uimplies: supposing a prop: basic-geometry: BasicGeometry iff: ⇐⇒ Q rev_implies:  Q or: P ∨ Q append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False select: L[n] cons: [a b] subtract: m
Lemmas referenced :  colinear-lsep-general euclidean-plane-subtype-oriented basic-geometry-subtype subtype_rel_transitivity geo-colinear_wf euclidean-plane-structure-subtype euclidean-plane-subtype geo-sep_wf geo-lsep_wf geo-colinear-symmetry geo-sep-sym lsep-all-sym oriented-colinear-append basic-geometry_wf euclidean-plane_wf oriented-plane_wf cons_wf geo-point_wf nil_wf lsep-implies-sep cons_member l_member_wf geo-colinear-is-colinear-set list_ind_cons_lemma istype-void list_ind_nil_lemma length_of_cons_lemma length_of_nil_lemma decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf istype-int int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma istype-le istype-less_than geo-between_wf geo-tar-opp-side_wf euclidean-plane-structure_wf geo-primitives_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution productElimination thin cut introduction extract_by_obid dependent_functionElimination hypothesisEquality applyEquality hypothesis instantiate isectElimination because_Cache independent_isectElimination sqequalRule independent_functionElimination productIsType universeIsType functionIsType independent_pairFormation dependent_pairFormation_alt inrFormation_alt inlFormation_alt equalityIstype inhabitedIsType isect_memberEquality_alt voidElimination dependent_set_memberEquality_alt natural_numberEquality unionElimination approximateComputation lambdaEquality_alt

Latex:
\mforall{}e:BasicGeometry.  \mforall{}A,B,P,Q,C,D:Point.
    (C  \mneq{}  D
    {}\mRightarrow{}  Colinear(C;P;Q)
    {}\mRightarrow{}  Colinear(D;P;Q)
    {}\mRightarrow{}  geo-tar-opp-side(e;A;B;P;Q)
    {}\mRightarrow{}  geo-tar-opp-side(e;A;B;C;D))



Date html generated: 2019_10_16-PM-01_21_16
Last ObjectModification: 2018_12_11-PM-00_19_19

Theory : euclidean!plane!geometry


Home Index