Nuprl Lemma : geo-colinear-symmetry
∀[e:BasicGeometry]. ∀[a,b,c:Point].
  {Colinear(b;c;a) ∧ Colinear(c;a;b) ∧ Colinear(c;b;a) ∧ Colinear(a;c;b) ∧ Colinear(b;a;c)} supposing Colinear(a;b;c)
Proof
Definitions occuring in Statement : 
basic-geometry: BasicGeometry, 
geo-colinear: Colinear(a;b;c), 
geo-point: Point, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
guard: {T}, 
and: P ∧ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
guard: {T}, 
and: P ∧ Q, 
all: ∀x:A. B[x], 
basic-geometry: BasicGeometry, 
implies: P ⇒ Q, 
geo-colinear-set: geo-colinear-set(e; L), 
l_all: (∀x∈L.P[x]), 
top: Top, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
prop: ℙ, 
less_than: a < b, 
squash: ↓T, 
true: True, 
select: L[n], 
cons: [a / b], 
subtract: n - m, 
cand: A c∧ B, 
geo-colinear: Colinear(a;b;c), 
subtype_rel: A ⊆r B
Lemmas referenced : 
geo-colinear-is-colinear-set, 
length_of_cons_lemma, 
length_of_nil_lemma, 
false_wf, 
lelt_wf, 
not_wf, 
geo-between_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
basic-geometry-subtype, 
subtype_rel_transitivity, 
basic-geometry_wf, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-colinear_wf, 
geo-point_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
sqequalRule, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
lambdaFormation, 
imageMemberEquality, 
baseClosed, 
isectElimination, 
because_Cache, 
productElimination, 
independent_pairEquality, 
lambdaEquality, 
productEquality, 
applyEquality, 
instantiate, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[e:BasicGeometry].  \mforall{}[a,b,c:Point].
    \{Colinear(b;c;a)  \mwedge{}  Colinear(c;a;b)  \mwedge{}  Colinear(c;b;a)  \mwedge{}  Colinear(a;c;b)  \mwedge{}  Colinear(b;a;c)\} 
    supposing  Colinear(a;b;c)
Date html generated:
2018_05_22-AM-11_54_02
Last ObjectModification:
2018_04_20-PM-05_47_44
Theory : euclidean!plane!geometry
Home
Index