Nuprl Lemma : colinear-lsep-general

g:OrientedPlane. ∀a,b,c,d:Point.  (Colinear(a;b;c)  Colinear(a;b;d)  c ≠  (∀y:Point. (y ab  cd)))


Proof




Definitions occuring in Statement :  oriented-plane: OrientedPlane geo-lsep: bc geo-colinear: Colinear(a;b;c) geo-sep: a ≠ b geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a oriented-plane: OrientedPlane euclidean-plane: EuclideanPlane or: P ∨ Q and: P ∧ Q cand: c∧ B geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) top: Top int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A less_than: a < b squash: T true: True select: L[n] cons: [a b] subtract: m exists: x:A. B[x] iff: ⇐⇒ Q rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3]
Lemmas referenced :  geo-lsep_wf euclidean-plane-structure-subtype euclidean-plane-subtype oriented-plane-subtype subtype_rel_transitivity oriented-plane_wf euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-point_wf geo-sep_wf geo-colinear_wf geo-sep-or colinear-lsep lsep-all-sym geo-colinear-is-colinear-set length_of_cons_lemma length_of_nil_lemma false_wf lelt_wf colinear-lsep' oriented-colinear-append cons_wf nil_wf lsep-implies-sep cons_member l_member_wf equal_wf exists_wf list_ind_cons_lemma list_ind_nil_lemma geo-sep-sym
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis instantiate independent_isectElimination sqequalRule because_Cache dependent_functionElimination setElimination rename dependent_set_memberEquality unionElimination independent_functionElimination productElimination isect_memberEquality voidElimination voidEquality natural_numberEquality independent_pairFormation imageMemberEquality baseClosed dependent_pairFormation inlFormation inrFormation productEquality lambdaEquality

Latex:
\mforall{}g:OrientedPlane.  \mforall{}a,b,c,d:Point.
    (Colinear(a;b;c)  {}\mRightarrow{}  Colinear(a;b;d)  {}\mRightarrow{}  c  \mneq{}  d  {}\mRightarrow{}  (\mforall{}y:Point.  (y  \#  ab  {}\mRightarrow{}  y  \#  cd)))



Date html generated: 2018_05_22-AM-11_54_34
Last ObjectModification: 2018_04_20-AM-09_48_40

Theory : euclidean!plane!geometry


Home Index