Nuprl Lemma : left-opposite-between
∀e:OrientedPlane. ∀a,b,p,q,x:Point.  (a_q_x 
⇒ a leftof bp 
⇒ q leftof pb 
⇒ x leftof pb)
Proof
Definitions occuring in Statement : 
oriented-plane: OrientedPlane
, 
geo-left: a leftof bc
, 
geo-between: a_b_c
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
guard: {T}
, 
oriented-plane: Error :oriented-plane, 
prop: ℙ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
geo-point_wf, 
Error :basic-geo-primitives_wf, 
Error :basic-geo-structure_wf, 
basic-geometry-_wf, 
Error :oriented-plane_wf, 
subtype_rel_transitivity, 
basic-geometry--subtype, 
geo-between_wf, 
geo-left_wf, 
geo-between-exchange3, 
geo-between-inner-trans, 
Error :oriented-plane-subtype, 
geo-between-symmetry, 
Error :use-plane-sep, 
left-convex3
Rules used in proof : 
instantiate, 
setElimination, 
independent_isectElimination, 
because_Cache, 
isectElimination, 
sqequalRule, 
applyEquality, 
rename, 
productElimination, 
hypothesis, 
independent_functionElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}e:OrientedPlane.  \mforall{}a,b,p,q,x:Point.    (a\_q\_x  {}\mRightarrow{}  a  leftof  bp  {}\mRightarrow{}  q  leftof  pb  {}\mRightarrow{}  x  leftof  pb)
Date html generated:
2017_10_02-PM-04_48_05
Last ObjectModification:
2017_08_05-AM-10_20_37
Theory : euclidean!plane!geometry
Home
Index